Announcements

1) Quiz tomorrow over section 7.8

Series Solutions to Differential Equations
(Chapter 8)
Heat Equation: Boss Level

3 spatial dimensions
$U=U(x, y, z, t)$ is the temperature of a three-dimensional object at time t.

Heat Equation

$$
\frac{\partial u}{\partial t}=k\left(\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}+\frac{\partial^{2} u}{\partial z^{2}}\right)
$$

the Laplacian of U
Boundary conditions specified later.

Temperature in a Cylinder

$$
x^{2}+y^{2} \leq 10
$$

Convert to Cylindrical Coordinates

Cylindrical to Cartesian

$$
\begin{aligned}
& x=r \cos \theta \\
& y=r \sin \theta \\
& z=z
\end{aligned}
$$

Cartesian to cylindrical

Convert Heat Equation to cylindrical coordinates

We get

$$
\frac{\partial u}{\partial t}=k\left(\frac{\partial^{2} u}{\partial r^{2}}+\frac{1}{r} \frac{\partial u}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} u}{\partial \theta^{2}}+\frac{\partial^{2} u}{\partial z^{2}}\right)
$$

Assume temperature is independent of z and θ. Then

$$
\frac{\partial v}{\partial z}=\frac{\partial v}{\partial \theta}=0 \text {, so we get }
$$

$$
\frac{\partial u}{\partial t}=k\left(\frac{\partial^{2} u}{\partial r^{2}}+\frac{1}{r} \frac{\partial u}{\partial r}\right)
$$

We suppose

$$
\begin{aligned}
& u(r, \theta, z, t) \\
= & u(r, t) \\
= & f(r) g(t)
\end{aligned}
$$

Now apply the heat equation:

$$
\begin{gathered}
\frac{\partial u}{\partial r}=f^{\prime}(r) g(t), \frac{\partial^{2} u}{\partial r^{2}}=f^{\prime \prime}(r) g(t) \\
\frac{\partial u}{\partial t}=f(r) g^{\prime}(t)
\end{gathered}
$$

We get

$$
\begin{aligned}
& g^{\prime}(t) f(r) \\
= & k\left(f^{\prime \prime}(r) g(t)+\frac{1}{r} f^{\prime}(r) g(t)\right) \\
= & k g(t)\left(f^{\prime \prime}(r)+\frac{1}{r} f^{\prime}(r)\right)
\end{aligned}
$$

Divide both sides by $k f(r) g(t)$

$$
\frac{1}{k} \frac{g^{\prime}(t)}{g(t)}=\frac{f^{\prime \prime}(r)+\frac{1}{r} f^{\prime}(r)}{f(r)}
$$

$$
\frac{1}{k} \frac{g^{\prime}(t)}{g(t)}=\frac{f^{\prime \prime}(r)+\frac{1}{r} f^{\prime}(r)}{f(r)}
$$

Since we have a function of r equal to a function of t, both sides of the equality must be constant:

$$
\frac{1}{k} \frac{g^{\prime}(t)}{g(t)}=\frac{f^{\prime \prime}(r)+\frac{1}{r} f^{\prime}(r)}{f(r)}
$$

$=-\alpha$ for some real number α

We get two ordinary differential equations:

$$
\begin{aligned}
& \frac{1}{k} \frac{g^{\prime}(t)}{g(t)}=-\alpha \text { easy } \\
& \frac{f^{\prime \prime}(r)+\frac{1}{r} f^{\prime}(r)}{f(r)}=-\alpha
\end{aligned}
$$

Rewriting,

$$
f^{\prime \prime}(r)+\frac{1}{r} f^{\prime}(r)=-\alpha f(r)
$$

We have

$$
f^{\prime \prime}(r)+\frac{1}{r} f^{\prime}(r)+\alpha f(r)=0
$$

homogeneous, second-order, non constant coefficients

By theory, there is a solution! How to find it?

Not Cauchy -Euler!

Wishful Thinking

Assume there are real numbers $\left(a_{n}\right)_{n=0}^{\infty}$ with

$$
f(r)=\sum_{n=0}^{\infty} a_{n} r^{n}
$$

purely formal!

Treating f as a polynomial,

$$
\begin{aligned}
f^{\prime}(r) & =\sum_{n=0}^{\infty} a_{n}\left(n r^{n-1}\right) \\
& =\sum_{n=1}^{\infty}\left(a_{n} n r^{n-1}\right) \\
f^{\prime \prime}(r) & =\sum_{n=1}^{\infty} a_{n} n\left((n-1) r^{n-2}\right) \\
& =\sum_{n=2}^{\infty}\left(a_{n} n(n-1) r^{n-2}\right)
\end{aligned}
$$

To make the indices nice, multiply

$$
f^{\prime \prime}(r)+\frac{1}{r} f^{\prime}(r)+\alpha f(r)=0
$$

by $r^{2}($ not $r!)$ to get

$$
r^{2} f^{\prime \prime}(r)+r f^{\prime}(r)+\alpha r^{2} f(r)=0
$$

$$
\begin{aligned}
& r^{2} f^{\prime \prime}(r)=\sum_{n=2}^{\infty}\left(a_{n} n(n-1) r^{n}\right) \\
& r f^{\prime}(r)=\sum_{n=1}^{\infty}\left(a_{n} n r^{n}\right) \\
& r^{2} \alpha f(r)=\sum_{n=0}^{\infty} \alpha a_{n} r^{n+2}
\end{aligned}
$$

reindex with $k=n+2$, then $n=k-2$

$$
r^{2} \alpha f(r)=\sum_{k=2}^{\infty} \alpha a_{k-2} r^{k}
$$

$$
r^{2} \alpha f(r)=\sum_{k=2}^{\infty} \alpha a_{k-2} r^{k}
$$

Substituting n for k,

$$
r^{2} \alpha f(r)=\sum_{n=2}^{\infty} \alpha a_{n-2} r^{n}
$$

Then

$$
\begin{aligned}
& r^{2} f^{\prime \prime}(r)+r f^{\prime}(r)+\alpha r^{2} f(r) \\
= & \left.\sum_{n=2}^{\infty}\left(a_{n}(n)(n-1) r^{n}\right)\right\} \text { combine } \\
& +\sum_{n=1}^{\infty}\left(a_{n} n r^{n}\right)
\end{aligned}
$$

$+\sum_{n=2}^{\infty} \alpha a_{n-2} r^{n}$ leave alone

We get

$$
\begin{aligned}
a_{1} r & +\sum_{n=2}^{\infty}\left(\sim_{n(n-1)+n}^{\infty}\right) a_{n} r^{n} \\
& +\sum_{n=2}^{\infty} \alpha a_{n-2} r^{n} \\
= & a_{1} r+\sum_{n=2}^{\infty} n^{2} a_{n} r^{n}+\sum_{n=2}^{\infty} 2 a_{n-2} r^{n} \\
= & a_{1} r+\sum_{n=2}^{\infty}\left(n^{2} a_{n}-\alpha a_{n-2}\right) r^{n} \\
= & 0
\end{aligned}
$$

